

Advanced Microscopy for Protein Localization in Caulobacter

W. E. Moerner, Matt Paige, S. Nishimura
Ellen Judd, Lucy Shapiro
Stanford University

supported in part by DARPA

The Problem

- •Differentiation and asymmetric cell division in Caulobacter have been shown to be accompanied by a pattern of protein localization
- •Detecting location of proteins in live bacteria can be done by fluorescent labeling with GFP
- •Research Challenge:

Determine real-time location of proteins such as divJ, PleC, in a 1µmx2µm sized object. Requires subwavelength resolution and extreme sensitivity

•Plan: Utilize ultimate sensitivity of single-molecule microscopy coupled with selected near-field and ultraresolution microscopies

The Promise

This cover of Science (March 1999) shows imaging of individual molecules by the Moerner Lab by a variety of techniques, both at low temperatures, as well as in room temperature biomolecular environments.

Key idea: Observing individuals removes ensemble averaging, allowing exploration of

- •static heterogeneity (different folds, structures, local environments, ...)
- •dynamic heterogeneity (different nucleotide states, activities, ...)

Optical Study of Single Molecules (1.66 ym)

We *optically* study the spectroscopy, orientation, motion, and dynamical behavior of *single*, *individual* chromophores in *complex* environments: solids, liquids, proteins, ... Why is this possibly useful?

No ensemble averaging: direct observation of (static and dynamic) heterogeneity by measuring the full distribution

Time-dependent state changes directly observable, without synchronization, and can detect rare intermediates

Extreme sensitivity to immediate local nanoenvironment; sense local strain field changes (spectral diffusion) or local optical field

Statistical correlations possible: can plot lifetime vs linewidth, brightness vs on-time, ...

Quantum optics: photon antibunching, nonclassical light, ... for single molecule trapped by the solid

Blinking and Switching Dynamics for Single Copies of Green Fluorescent Protein

 $3x2 \mu m$, 100 ms frames

Wide-field TIR microscopy, water-filled agarose gels

Emission characteristics: Short on-time, long off time, reversible

On-time distribution scales inversely with intensity

No pH dependence

Consistent with reversible bleaching with q.e. 10⁻⁵

Probable mechanism: photoisomerizaton

Nature (1997) 388, 355 J. Phys. Chem. (1999) A103, 1553

Detection of Local Calcium Concentrations by Fluorescence Resonance Energy Transfer From Single Molecules

Sophie Brasselet, Erwin Peterman, Atsushi Miyawaki*, Roger Tsien*, and W.E. Moerner

2-color confocal microscopy

SM time traces: D and A

excess width at intermediate [Ca++] due to binding kinetics

single-molecule histograms

Imaging Single Molecules in vivo

Recent advance (unpublished):
Imaging of single MHCII proteins on live cells

S. Brasselet, S. Nishimura, WEM M. Vrljic, H. McConnell

Background:

from The Biology Project, developed at The University of Arizona.

Fremont, et al. Science 1996, 272: 1001

Key idea: peptide off-times are ~200 hr; label peptides with fluorescent tag via -SH